Holographically Probing Longitudinal Magnetic Fields with Electron Vortex Beams
نویسندگان
چکیده
منابع مشابه
Elastic Scattering of Electron Vortex Beams in Magnetic Matter.
Elastic scattering of electron vortex beams on magnetic materials leads to a weak magnetic contrast due to Zeeman interaction of orbital angular momentum of the beam with magnetic fields in the sample. The magnetic signal manifests itself as a redistribution of intensity in diffraction patterns due to a change of sign of the orbital angular momentum of the electron vortex beam. While in the ato...
متن کاملCreating electron vortex beams with light.
We propose an all-optical method of creating electron vortices utilizing the Kapitza-Dirac effect. This technique uses the transfer of orbital angular momentum from photons to free electrons creating electron vortex beams in the process. The laser intensities needed for this experiment can be obtained with available pulsed lasers and the resulting electron beams carrying orbital angular momentu...
متن کاملAn apparatus for applying strong longitudinal magnetic fields to clinical photon and electron beams.
Monte Carlo studies have recently renewed interest in the use of the effect of strong transverse and longitudinal magnetic fields to manipulate the dose characteristics of clinical photon and electron beams. A 3.5 T superconducting solenoidal magnet was used to evaluate the effect of a longitudinal field on both photon and electron beams. This note describes the apparatus and demonstrates some ...
متن کاملElectron vortex beams with high quanta of orbital angular momentum.
Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100ħ) per electr...
متن کاملReduction of photon contamination in electron therapy of cancer with magnetic fields
Introduction: Photon contamination is a restriction on treatment with electron that increase dose to healthy tissue below the tumor. The aim of this study is to reduce the photon contamination using a magnet system. Materials and Methods: A mini-applicator equipped with two neodymium boron permanent magnets was designed which make it possible to adjust the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2018
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s1431927618005184